Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Chứng minh rằng nếu G và G’ lần lượt là trọng tâm của các tam giác ABC và A’B’C’ bất kì thì:

Chứng minh rằng nếu G và G’ lần lượt là trọng tâm của các tam giác ABC và A’B’C’ bất kì thì:

  \(3\overrightarrow {GG'}  = \overrightarrow {AA'}  + \overrightarrow {BB'}  + \overrightarrow {CC'} \)                                                      

Trả lời:

Ta có:

\(\eqalign{
& \overrightarrow {GG'} = \overrightarrow {GA} + \overrightarrow {AA'} + \overrightarrow {B'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GB} + \overrightarrow {BB'} + \overrightarrow {B'G'} \cr
& \overrightarrow {GG'} = \overrightarrow {GC} + \overrightarrow {CC'} + \overrightarrow {C'G'} \cr
& \Rightarrow 3\overrightarrow {GG'} = (\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} ) + (\overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC'} ) + (\overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'} )(1) \cr} \)

G là trọng tâm của tam giác ABC nên:

       \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)   (2)

G’ là trọng tâm của tam giác A’B’C’ nên:

\(\eqalign{
& \overrightarrow {G'A'} + \overrightarrow {G'B'} + \overrightarrow {G'C'} = \overrightarrow 0 \cr
& \Leftrightarrow \overrightarrow {A'G'} + \overrightarrow {B'G'} + \overrightarrow {C'G'} = \overrightarrow 0 \cr} \)

(3)

Từ (1), (2) và (3) suy ra đpcm.