Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

y = x3 + 3x2 + 1

b) Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m

 \({x^3} + 3{x^2} + 1 = {m \over 2}\)

c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C)

Trả lời:

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0  ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình \({x^3} + 3{x^2} + 1 = {m \over 2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y = {m \over 2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại )

Từ đồ thị ta thấy:

- Với \({m \over 2} < 1 \Leftrightarrow m < 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với \({m \over 2} = 1\)  ⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với \(1 < {m \over 2} < 5\) ⇔ 2<m

- Với  \({m \over 2} = 5 \Leftrightarrow m = 10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với \({m \over 2} > 5 \Leftrightarrow m > 10\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1). 

Đường thẳng đi qua hai  điểm này có phương trình là: \({{y - 1} \over 4} = {x \over { - 2}} \Leftrightarrow y =  - 2x + 1\)