Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Giải hệ phương trình sau bằng cách đưa về hệ phương trình dạng tam giác:

Giải hệ phương trình sau bằng cách đưa về hệ phương trình dạng tam giác:

\(\left\{ \matrix{
x + 3y + 2z = 1 \hfill \cr
3x + 5y - z = 9 \hfill \cr
5x - 2y - 3z = - 3 \hfill \cr} \right.\)  (I)

Trả lời:

Nhân phương trình thứ nhất với -3 rồi cộng vào phương trình thứ hai.

Lại nhân phương trình thứ nhất rồi cộng vào phương trình thứ ba thì được hệ:

(I) ⇔ (II) 

\(\left\{ \matrix{
x + 3y + 2z = 1 \hfill \cr
- 4y - 7z = 6 \hfill \cr
- 17y - 13z = - 8 \hfill \cr} \right.\)

Nhân phương trình thứ hai của hệ (II) với 17 rồi cộng vào phương trình thứ ba thì được:

(II) ⇔ (III)

\(\left\{ \matrix{
x + 3y + 2z = 1 \hfill \cr
- 4y - 7z = 6 \hfill \cr
- 67z = 134 \hfill \cr} \right.\)

Hệ phương trình (III) có dạng tam giác. Tìm giá trị các ẩn ngược từ dưới lên dễ dàng tìm được nghiệm của hệ phương trình đã cho:

(x, y, z) = (-1, 2, -2)