Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Chứng minh rằng với mọi giá trị m≠0 phương trình đã cho có hai nghiệm phân biệt

Cho phương trình: mx2 – 2x – 4m – 1 = 0

a) Chứng minh rằng với mọi giá trị m≠0 phương trình đã cho có hai nghiệm phân biệt.

b) Tìm giá trị của m để - 1 là một nghiệm của phương trình. Sau đó tìm nghiệm còn lại.

Trả lời:

a)

\(\eqalign{
& \Delta {\rm{ }} = {\rm{ }}1 + m\left( {4m + 1} \right) = 4{m^2} + m + 1 \cr
& = (2m + {1 \over 4}) + {{15} \over {16}} > 0\forall m \cr} \)

Vậy với m ≠ 0 phương trình là bậc hai có biệt thức chung nên có 2 nghiệm phân biệt.

b) 

\(\eqalign{
& f( - 1) = m + 2 - 4m - 1 = - 3m + 1 = 0 \cr
& \Rightarrow m = {1 \over 3} \cr} \)

Với \(m = {1 \over 3}\) , phương trình có nghiệm x1 = -1.

Gọi nghiệm kia là x2.

Theo định lí Vi-et: 

\({x_1} + {x_2} =  - 1 + {x_2} = {2 \over m} = {2 \over {{1 \over 3}}} \Rightarrow {x_2} = 7\)