Đang tải thanh công cụ tìm kiếm ...

Chứng minh rằng:

Chứng minh rằng nếu các số a2, b2, c2 lập thành một cấp số cộng (abc ≠ 0) thì các số \({1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) cũng lập thành một cấp số cộng.

Trả lời:

Ta phải chứng minh: \({1 \over {b + c}} + {1 \over {a + b}} = {2 \over {c + a}}\) (1)

Biến đổi:

\(\eqalign{
& (1) \Leftrightarrow {1 \over {b - c}} - {1 \over {c - a}} = {1 \over {c + a}} - {1 \over {a + b}} \cr
& \Leftrightarrow {{c + a - b - c} \over {(c + a)(b + c)}} = {{a + b - c - a} \over {(c + a)(a + b)}} \cr
& \Leftrightarrow {{a - b} \over {b + c}} = {{b - c} \over {a + b}} \cr} \)

Vậy (1) đúng tức là: \({1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\) là cấp số cộng.