Xem thêm: Ôn tập Chương III - Nguyên hàm - Tích phân và ứng dụng
a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.
Trả lời:
a) Kí hiệu K là khoảng hoặc đoạn hoặc nửa đoạn của tập số thực K
Hàm số F(x) gọi là một nguyên hàm của hàm số f(x) trên khoảng K nếu ∀x ∈ K ta có F’(x) = f(x)
b) Phương pháp tính nguyên hàm toàn phần sựa trên cơ sở định lí:
Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì :
\(\int {u(x).v'(x)dx = u(x)v(x) - \int {u'(x)v(x)dx} } \) (3)
Để tính nguyên hàm toàn phần ta cần phân tích f(x) thành g(x).h(x),
- Chọn một nhân tử đặt bằng u còn nhân tử kia đặt là v’
- Tìm u’ và v,
- Áp dụng công thức trên, ta đưa tích phân ban đầu về một tích phân mới đơn giản hơn.
Ta cần chú ý các cách đặt thường xuyên như sau:
|
\(\int {P(x){e^x}dx} \) |
\(\int {P(x)\sin {\rm{x}}dx} \) |
\(\int {P(x)cos{\rm{x }}dx} \) |
\(\int {P(x)ln{\rm{x }}dx} \) |
u |
P(x) |
P(x) |
P(x) |
ln(x) |
dv |
exdx |
sinxdx |
Cosx dx |
P(x) dx |
Ví dụ:
Tìm nguyên hàm của hàm số f(x) = (3x3 0 2x) lnx
Giải
Đặt u = lnx
\(\eqalign{
& \Rightarrow u' = {1 \over x} \cr
& v' = 3{x^3} - 2x \Rightarrow v = {3 \over 4}{x^4} - {x^2} \cr} \)
Suy ra:
\(\eqalign{
& \int {f(x)dx = ({3 \over 4}} {x^4} - {x^2})\ln x - \int {{3 \over 4}} {x^3} - x)dx \cr
& = ({3 \over 4}{x^4} - {x^2})\ln x - {3 \over {14}}{x^4} + {1 \over 2}{x^2} + C \cr} \)
Các bài học nên tham khảo