Xem thêm: Tích phân
5. Tính các tích phân sau:
a) \(\int_{0}^{1}(1+3x)^{\frac{3}{2}}dx\) ; b) \(\int_{0}^{\frac{1}{2}}\frac{x^{3}-1}{x^{2}-1}dx\)
c) \(\int_{1}^{2}\frac{ln(1+x)}{x^{2}}dx\)
Hướng dẫn giải :
a) \(\int_{0}^{1}(1+3x)^{\frac{3}{2}}dx =\frac{1}{3}\int_{0}^{1}(1+3x)^{\frac{3}{2}}d(1+3x)\)
\(=\frac{1}{3}\frac{2}{5}(1+3x)^{\frac{5}{2}}|_{0}^{1}=4\tfrac{2}{15}\)
b) \(\int_{0}^{\frac{1}{2}}\frac{x^{3}-1}{x^{2}-1}dx= \int_{0}^{\frac{1}{2}}\frac{(x-1)(x^{2}+x+1)}{(x-1)(x+1)}dx\) \(= \int_{0}^{\frac{1}{2}}\frac{x(x+1)+1}{x+1}dx\)
\(=\int_{0}^{\frac{1}{2}}(x+\frac{1}{x+1})dx=(\frac{x^{2}}{2}+ln\left | x+1 \right |)|_{0}^{\frac{1}{2}}=\frac{1}{8}+ln\frac{3}{2}\)