Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.

Bài 7. Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.

a) ∀n ∈ N: n chia hết cho n; 

b) ∃x ∈ Q: x2=2;

c) ∀x ∈ R: x< x+1;

d) ∃x ∈ R: 3x=x2+1;

Hướng dẫn giải:

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) \(\overline{\exists x\in \textbf{Q}:x^{2}=2}\) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) \(\overline{\forall x\in \textbf{R}:x<x+1}\) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) \(\overline{\exists x\in \textbf{R}:3x=x^{2}+1}\) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"  

Đây là mệnh đề sai vì với x=\(\frac{3+\sqrt{5}}2{}\) ta có : 

3 \(\left (\frac{3+\sqrt{5}}{2} \right )\)=\(\left (\frac{3+\sqrt{5}}{2} \right )^{2}\)+1