Xem thêm: Cực trị của hàm số
Bài 6. Xác định giá trị của tham số m để hàm số \(y=\frac{x^{2}+mx+1}{x+m}\) đạt cực đại tại x = 2.
Hướng dẫn giải:
Tập xác định : \(D=\textbf{R}\setminus \left \{ -m \right \};\)
\(y'=\frac{2x^{2}+2mx+m^{2}-1}{(x+m)^{2}}.\)
Nếu hàm số đạt cực đại tại x = 2 thì y'(2) = 0 ⇔ m2 + 4m + 3 = 0 ⇔ m=-1 hoặc m=-3
- Với m = -1, ta có : \(y=\frac{x^{2}-x+1}{x-1};\)
\(y'=\frac{x^{2}-2x}{(x-1)^{2}}; y'=0\Leftrightarrow \left\{\begin{matrix} x^{2} -2x=0& \\ x\neq 1 & \end{matrix}\right.\Leftrightarrow\) x=0 hoặc x=2.
Ta có bảng biến thiên :
Trường hợp này ta thấy hàm số không đạt cực đại tại x = 2.
- Với m = -3, ta có: \(y=\frac{x^{2}3x+1}{x-3};\)
\(y'=\frac{x^{2}-6x+8}{(x-3)^{2}};y'=0\Leftrightarrow \left\{\begin{matrix} x^{2-6x+8=0} & \\ x\neq 3 & \end{matrix}\right.\Leftrightarrow\)x=2 hoặc x=4
Ta có bản biến thiên :
Trường hợp này ta thấy hàm số đạt cực đại tại x = 2.
Vậy m = -3 là giá trị cần tìm.