Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Giải các phương trình bằng cách đặt ẩn phụ:

Giải các phương trình bằng cách đặt ẩn phụ:

a) \(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\) 

b) \({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\)   

Hướng dẫn làm bài:

a) \(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\) 

Đặt x2 – 2x = t. Khi đó (1) ⇔ 2t2 + 3t +1 = 0 (*)

Phương trình (*) có a – b + c = 2 – 3 + 1 = 0

Vậy phương trình (*) có hai nghiệm:  

- Với t = -1. Ta có

\(\eqalign{
& {x^2} - 2{\rm{x}} = - 1 \Leftrightarrow {x^2} - 2{\rm{x}} + 1 = 0 \cr
& \Rightarrow {x_1} = {x_2} = 1 \cr}\)

- Với \(t =  - {1 \over 2}\). Ta có:  

\(\eqalign{
& {x^2} - 2{\rm{x}} = - {1 \over 2} \Leftrightarrow 2{{\rm{x}}^2} - 4{\rm{x}} + 1 = 0 \cr
& \Delta ' = {\left( { - 2} \right)^2} - 2.1 = 4 - 2 = 2 \cr
& \sqrt {\Delta '} = \sqrt 2 \cr
& \Rightarrow {x_3} = {{ - \left( { - 2} \right) + \sqrt 2 } \over 2} = {{2 + \sqrt 2 } \over 2} \cr
& {x_4} = {{ - \left( { - 2} \right) - \sqrt 2 } \over 2} = {{2 - \sqrt 2 } \over 2} \cr} \)

Vậy phương trình có 4 nghiệm: \({x_1} = {x_2} = 1;{x_3} = {{2 + \sqrt 2 } \over 2};{x_4} = {{2 - \sqrt 2 } \over 2}\)

b) \({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\) 

Đặt \(x + {1 \over x} = t\) ta có phương trình: t2 – 4t + 3t = 0

Phương trình có a + b + c = 1 – 4 + 3 =0 nên có 2 nghiệm t1 = 1; t2  = 3

Với t1 = 1, ta có:

\(\eqalign{
& x + {1 \over x} = 1 \cr
& \Leftrightarrow {x^2} - x + 1 = 0 \cr
& \Delta = {\left( { - 1} \right)^2} - 4 = - 3 < 0 \cr} \) 

Phương trình vô nghiệm

Với t2= 3, ta có

\(\eqalign{
& x + {1 \over x} = 3 \cr
& \Leftrightarrow {x^2} - 3{\rm{x}} + 1 = 0 \cr
& \Delta = {\left( { - 3} \right)^2} - 4 = 5 \cr
& \Rightarrow {x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}(TM) \cr} \) 

Vậy phương trình có 2 nghiệm: \( \Rightarrow {x_1} = {{3 + \sqrt 5 } \over 2};{x_2} = {{3 - \sqrt 5 } \over 2}\)