Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Chứng tỏ rằng với x≠0 và x≠±a (a là một số nguyên), giá trị của biểu thức là một số chẵn.

Chứng tỏ rằng với (a là một số nguyên), giá trị của biểu thức

 \(\left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right)\)  là một số chẵn.

Hướng dẫn làm bài:

Điều kiện của biến để giá trị của biểu thức được xác định là :\(x \ne 0,x \ne  \pm a\) ( a là một số nguyên)

Ta có :\(\left( {a - {{{x^2} + {a^2}} \over {x + a}}} \right).\left( {{{2a} \over x} - {{4a} \over {x - a}}} \right) = {{ax + {a^2} - {x^2} - {a^2}} \over {x + a}}.{{2ax - 2{a^2} - 4ax} \over {x\left( {x - a} \right)}}\)

\( = {{x\left( {a - x} \right)2a\left( { - a - x} \right)} \over {x\left( {a + a} \right)\left( {x - a} \right)}} = 2a\)

Vì a là số nguyên nên 2a là số chẵn.

Vậy giá trị của biểu thức đã cho là một số chẵn.