Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Bài 40. Rút gọn biểu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng:

Bài 40. Rút gọn biếu thức sau theo hai cách (sử dụng và không sử dụng tính chất phân phối của phép nhân đối với phép cộng:

                         \( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)).

Hướng dẫn giải:

Áp dụng tính phân phối: 

 \( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)) \( =\frac{(x-1)(x^{2}+x+1)}{x}+\frac{(x-1)x^{3}}{x(x-1)}\)

                                      \( =\frac{x^{3}-1}{x}+\frac{x^{3}}{x}=\frac{x^{3}-1+x^{3}}{x}=\frac{2x^{3}-1}{x}\)

Không áp dụng tính phân phối:

\( \frac{x-1}{x}\).(x2 + x+ 1 + \( \frac{x^{3}}{x-1}\)) \( =\frac{x-1}{x}.(\frac{(x^{2}+x+1)(x-1)}{x-1}+\frac{x^{3}}{x-1})\)

\( =\frac{x-1}{x}.(\frac{x^{3}-1}{x-1}+\frac{x^{3}}{x-1})=\frac{x-1}{x}.\frac{x^{3}-1+x^{3}}{x-1}\)

                                     \( =\frac{(x-1)(2x^{3}-1)}{x(x-1)}=\frac{2x^{3}-1}{x}\)