Xem thêm: Phép Tịnh Tiến
Bài 3. Trong mặt phẳng tọa độ Oxy cho vectơ v = ( -1;2), hai điểm A(3;5), B( -1; 1) và đường thẳng d có phương trình x-2y+3=0.
a. Tìm tọa độ của các điểm A', B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo \(\overrightarrow{v}\)
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo \(\overrightarrow{v}\)
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo \(\overrightarrow{v}\)
Lời giải:
a) Giả sử A'=(x'; y'). Khi đó
\(T_{\vec{v}}\) (A) = A' ⇔ \(\left\{\begin{matrix} {x}'= 3 - 1 = 2\\ {y}'= 5 + 2 = 7 \end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = \(T_{\vec{v}}\) (C) ⇔ C= \(T_{\vec{-v}}\) (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(T_{\vec{v}}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(T_{\vec{v}}\)(d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(T_{\vec{v}}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(T_{\vec{v}}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8