Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

27. Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về  dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

a) \(\left\{\begin{matrix} \frac{1}{x} - \frac{1}{y} = 1& & \\ \frac{3}{x} + \frac{4}{y} = 5& & \end{matrix}\right.\).  Hướng dẫn. Đặt u = \(\frac{1}{x}\), v = \(\frac{1}{y}\);

b) \(\left\{\begin{matrix} \frac{1}{x - 2} + \frac{1}{y -1} = 2 & & \\ \frac{2}{x - 2} - \frac{3}{y - 1} = 1 & & \end{matrix}\right.\) Hướng dẫn. Đặt u = \(\frac{1}{x - 2}\), v = \(\frac{1}{y - 1}\).

Bài giải:

a) Điền kiện x ≠ 0, y ≠ 0.

Đặt u = \(\frac{1}{x}\), v = \(\frac{1}{y}\) ta được hệ phương trình ẩn u, v: \(\left\{\begin{matrix} u - v = 1 & & \\ 3u + 4v = 5& & \end{matrix}\right.\)

(1) ⇔ u = 1 + v (3)

Thế (3) vào (2): 3(1 + v) +4v = 5

⇔ 3 + 3v + 4v = 5 ⇔ 7v =2 ⇔ v = \(\frac{2}{7}\)

Từ đó u = 1 + v = 1 + \(\frac{2}{7}\) = \(\frac{9}{7}\).

Suy ra hệ đã cho tương đương với: \(\left\{\begin{matrix} \frac{1}{x} = \frac{9}{7}& & \\ \frac{1}{y} = \frac{2}{7}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{7}{9}& & \\ y = \frac{7}{2}& & \end{matrix}\right.\)

b) Điều kiện x - 2 ≠ 0, y - 1 ≠ 0 hay x ≠ 2, y ≠ 1.

Đặt u = \(\frac{1}{x -2}\), v = \(\frac{1}{y -1}\) ta được hệ đã cho tương đương với:

\(\left\{\begin{matrix} u + v = 2 & & \\ 2u - 3v = 1 & & \end{matrix}\right.\)

(1) ⇔ v = 2 - u (3)

Thế (3) vào (2): 2u - 3(2 - u) = 1

⇔ 2u - 6 + 3u = 1 ⇔ 5u = 7 ⇔ u = \(\frac{7}{5}\)

Từ đó v = 2 - \(\frac{7}{5}\) = \(\frac{3}{5}\).

Suy ra hệ đã cho tương đương với:

\(\left\{\begin{matrix} \frac{1}{x -2} = \frac{7}{5}& & \\ \frac{1}{y -1} = \frac{3}{5}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x -2 = \frac{5}{7}& & \\ y - 1 = \frac{5}{3}& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{5}{7}+ 2& & \\ y = \frac{5}{3}+1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = \frac{19}{7}& & \\ y = \frac{8}{3}& & \end{matrix}\right.\)