Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Rađa của một máy bay trực thăng

23. Rađa của một máy bay trực thăng theo dõi chuyển động của một ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian bởi công thức:

v = 3t2 – 30t + 135,

(t tính bằng phút, v tính bằng km/h).

a) Tính vận tốc của ôtô khi t = 5 phút.

b) Tính giá trị của t khi vận tốc ôtô bằng 120 km/h (làm tròn kết quả đến chữ số thập phân thứ hai).

Bài giải:

a) Khi t = 5 (phút) thì v = 3 . 52 – 30 . 5 + 135 = 60 (km/h)

b) Khi v = 120 (km/h), để tìm t ta giải phương trình 120 = 3t2 – 30t + 135

Hay t2 – 10t + 5 = 0. Có a = 1, b = -10, b’ = -5, c = 5.

∆’ = 52 – 5 = 25 – 5 = 20, √∆’ = 2√5

t1 = 5 + 2√5 ≈ 9,47, t2 = 5 - 2√5 ≈ 0,53

Vì rađa chỉ theo dõi trong 10 phút nên 0 < t < 10 nên cả hai giá trị của t đều thích hợp. Vậy t1 ≈ 9,47 (phút), t2 ≈ 0,53 (phút).