Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Bài 19. Cho một đường tròn tâm O

Bài 19. Cho một đường tròn tâm O, đường kính AB và S là một điểm nằm ngoài đường tròn. SA và SB lần lượt  cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.

Hướng dẫn giải:

BM ⊥ SA (\(\widehat{AMB}\) = \(90^{\circ}\) vì là góc nội tiếp chắn nửa đường tròn).

Tương tự, có: AN ⊥ SB

Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.

Suy ra SH ⊥ AB.

(Trong một tam giác ba đường cao đồng quy)