Xem thêm: Góc nội tiếp
Bài 19. Cho một đường tròn tâm O, đường kính AB và S là một điểm nằm ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.
Hướng dẫn giải:
BM ⊥ SA (\(\widehat{AMB}\) = \(90^{\circ}\) vì là góc nội tiếp chắn nửa đường tròn).
Tương tự, có: AN ⊥ SB
Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.
Suy ra SH ⊥ AB.
(Trong một tam giác ba đường cao đồng quy)
Các bài học nên tham khảo