Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Cho hình chữ nhật ABCD có AB=12cm, BC=5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn.

Bài 1. Cho hình chữ nhật ABCD có AB=12cm, BC=5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Hướng dẫn giải:

Gọi O là giao điểm hai đường chéo của hình chữ nhật, ta có OA=OB=OC=OD.

Bốn điểm A, B, C, D, cách đều điểm O nên bốn điểm này cùng thuộc một đường tròn.

Xét tam giác ABC vuông tại B, có \(AC^{2}=AB^{2}+BC^{2}=12^{2}+5^{2}=169\Rightarrow AC=13.\)

Bán kính của đường tròn là \(R=13:2=6,5.\)

Nhận xét: Để chứng minh nhiều điểm cùng nằm trên một đường tròn, ta chứng minh các điểm này cùng cách đều một điểm.