Đang tải thanh công cụ tìm kiếm ...
Phép Tính Online

Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát

Bài 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát ucho bởi công thức:

a) un = \( \frac{n}{2^{n}-1}\);                                  b) un = \( \frac{2^{n}-1}{2^{n}+1}\)

c) un = \( (1+\frac{1}{n})^{n}\);                                d) un = \( \frac{n}{\sqrt{n^{2}+1}}\)

Hướng dẫn giải:

a) Năm số hạng đầu của dãy số là u1 = 1; u2 = \( \frac{2}{3}\), \( u_{3}=\frac{3}{7}; u_{4}=\frac{4}{15};u_{5}=\frac{5}{31}\)

b) Năm số hạng đầu của dãy số là \( u_{1}=\frac{1}{3},u_{2}=\frac{3}{5};u_{3}=\frac{7}{9};u_{4}=\frac{15}{17};u_{5}=\frac{31}{33}\)

c)  Năm số hạng đầu của dãy số là

                     u1 = 2; \( u_{2}=\frac{9}{4};u_{3}=\frac{64}{27};u_{4}=\frac{625}{256};u_{5}=\frac{7776}{3125}\)

d) Năm số hạng đầu của dãy số là 

                     \( u_{1}=\frac{1}{\sqrt{2}};u_{2}=\frac{2}{\sqrt{5}};u_{3}=\frac{3}{\sqrt{10}};u_{4}=\frac{4}{\sqrt{17}};u_{5}=\frac{5}{\sqrt{26}}\)